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Pretransitional fluctuations of the Lebwohl-Lasher model of a nematic liquid crystal
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We carry out Monte Carlo simulations of the Lebwohl-Lasher model of a nematic liquid crystal at
temperatures just above the orientational ordering transition. We calculate the correlation functions
for the order parameter fluctuations which are compared to the predictions of Landau theory in the
Gaussian approximation in order to infer the values of the inverse susceptibility A and the elastic
constant L. We also observe the distribution function for the invariant trQ?, which has simple
analytic form if the fluctuations of the order parameter have a Gaussian distribution. At those
temperatures for which the distribution of order parameter fluctuations is Gaussian, A is found to
follow the Landau theory behavior A(T) = a(T — T*), with (T — T*)/T. = 3 x 103, where T. is
the nematic-isotropic phase transition temperature.

PACS number(s): 61.30.Cz, 64.60.Cn, 05.40.+j

INTRODUCTION

A nematic liquid crystal is characterized by a traceless,
symmetric order parameter tensor Q in its ordered phase.
Macroscopically, @ can be identified with the anisotropic
part of the magnetic susceptibility, for example. For an
idealized system of rodlike molecules, Q can be defined
microscopically as

Qo= (§ X5 (b)), 0

where u’ is a unit vector describing the orientation of
molecule . Within Landau theory, the free energy den-
sity associated with the nematic ordering is given by

1 1 1
f= §AtrQ2 - -?;Btrcf + ZO(ter)2 (2)

plus higher order terms [1,2]. It is conventionally as-
sumed [1,2] that only the coefficient A is temperature
dependent. The cubic term cannot be ruled out, since
the transformation @ — —Q corresponds to the trans-
formation from a prolate to an oblate distribution of the
molecular axes and is thus not expected to leave the free
energy invariant. The presence of the cubic term in the
free energy expansion leads to a first order phase transi-
tion at a temperature 7, given by A(T.) = % %2, which
is higher than the lower limit of stability of the isotropic
phase T™*, which corresponds to A(T*) = 0.

The linear response of the order parameter to an exter-
nal field in the disordered phase is governed by a suscep-
tibility x, which is proportional to 1/A. Experimentally,
this corresponds to field-induced birefringence, which has
been seen in both static magnetic fields [3] and strong
optical fields [4]. The experiments indicate that the co-
efficient A is linear in temperature,

A(T) = o(T — T*) (3)

as is usually assumed in the Landau theory. T* is
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typically found to be on the order of 1 K below the
nematic-isotropic phase transition temperature, so that
(T. — T*)/T. ~ 3 x 1073, The proximity of the phase
transition temperature to the hypothetical second order
transition temperature T* leads to strong enhancement
of the ordering susceptibility just above the phase tran-
sition. Since the susceptibility is related by linear re-
sponse theory to the correlation function of the order pa-
rameter fluctuations, these fluctuations are also strongly
enhanced near the phase transition, which can be seen
directly by light scattering techniques [3].

This paper is concerned with the study of pre-
transitional fluctuation effects in the Lebwohl-Lasher
model. The Lebwohl-Lasher model [5] is a statistical
mechanical model for a nematic liquid crystal in which
molecules, whose states are specified by the orientation of
a unit vector 1, are confined to the sites of a cubic lattice.
The interactions between the molecules are governed by
the Hamiltonian

H=—¢) Py(-4), (4)
(t3)

where the sum includes all pairs %,j of nearest neighbors.
Mean field theory applied to this model yields the Maier-
Saupe theory [6] of the nematic-isotropic phase transi-
tion. From its inception, the model has been the sub-
ject of simulation studies in order to clarify the role of
the mean field approximation in the Maier-Saupe the-
ory. In general, comparisons of simulations with mean
field theory indicate that the mean field approximation
gives a too strongly first order transition [5,7-9]. The
latent heat at the transition is overestimated by a fac-
tor = 2.5 [7,9], and recent simulation studies [8,9] indi-
cate that the stability limit of the isotropic phase T* is
very close to the nematic-isotropic transition tempera-
ture, with (T, — T*)/T. < 3 x 1073, whereas mean field

theory predicts (T, — T*)/T. = 10~ 1.
In the present work, we carry out simulation stud-
ies to observe directly the correlation functions for or-
der parameter fluctuations in the isotropic phase of the
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Lebwohl-Lasher model. Comparison of the simulation
results with expressions obtained from Landau theory in
the Gaussian approximation allow us to extract the value
of the coefficient A in the free energy expansion, as well as
the value of the elastic constant L, which governs the cou-
pling of order parameter fluctuations at nearby points.
Due to the finite size of the simulated system, both the
ordered and disordered phases contribute to the statis-
tical averages near the phase transition, whereas in the
thermodynamic limit only the phase of lowest absolute
free energy contributes. To check whether this finite size
effect is contributing to the measured susceptibility, we
examine the distribution function for the invariant trQ?2.
This distribution is predicted to have a simple form in
the thermodynamic limit, where the fluctuations of the
spatially averaged order parameter have a Gaussian dis-
tribution. Very near the phase transition, significant de-
partures from a Gaussian distribution for the fluctuations
are found, but at sufficiently high temperatures a Gaus-
sian distribution is observed. For those temperatures for
which the fluctuations obey a Gaussian distribution, the
coefficient A is well described by the Landau theory be-
havior, Eq. (3).

An essential element of our analysis here is the proce-
dure we have developed to account for finite size effects
near the transition thereby obtain improved estimates of
the correlation length and susceptibility in the thermo-
dynamic limit.

NEMATIC FLUCTUATIONS
IN THE ISOTROPIC PHASE

Spatial correlations of the fluctuations of the order pa-
rameter can be described, in the long wavelength limit,
in terms of a continuum Landau-Ginsburg theory. By
comparing the Landau-Ginsburg result, obtained in the
Gaussian approximation in which only invariants of sec-
ond order in Q are retained, with the results obtained
from the simulations, we can infer the values of the co-
efficient A and the elastic constant L. This approach for
obtaining the elastic constant is closely analogous to the
method used by Cleaver and Allen [10] to calculate the
Frank elastic constant K in the nematic phase. Fluctua-
tions above the nematic-isotropic transition are discussed
in Refs. [11] and [12] and references therein. Here we give
a brief discussion in order to introduce some ideas and
notation used in analyzing the simulations.

If the free energy density is expanded about the
isotropic state Q = 0, retaining only quadratic terms and
considering the possibility of spatial variations in the or-
der parameter, we have

f = 34QasQpa + 5L@ap Q0 ®)

where we use the notation

Xy=—. (6)

It is understood that (5) applies to long wavelength vari-
ations of @, for which the underlying lattice should be

irrelevant, so that we can treat @ as if it varies continu-
ously in space.

For general nematics, there is another quadratic invari-
ant in the gradients of Q of the form

1
§L2Qaﬁ,aQ‘y[3,77 (7)

but symmetry considerations imply that L, = 0 for the
Lebwohl-Lasher model. In general, rotational symme-
try requires that the free energy be invariant under the
transformation

Q(x) - RQ(R'x)R™Y, (8)

where R is a rotation matrix. This property holds for
both (5) and (7). However, the invariance of the Lebwohl-
Lasher Hamiltonian under rotations of the molecules im-
plies that the free energy is invariant under rotations of
the tensor indices alone,

Q(x) = RQ(x)R™". (9)

Since the term (7) does not have this property, its co-
efficient L, must be zero. A more general Hamiltonian
containing dependence on, for example, d@; - r;; would
have L, # 0.

For the discussion of fluctuations, it is convenient to
expand the order parameter as

ZZQk (10)

k =1

Qap(x) =

where the E’s are a set of five basis tensors satisfying

E:xﬁ = Eba,
E(ila -
EigE}, =6;. (11)

An explicit representation having these properties has
been given in Ref. [13]. In terms of the expansion coeffi-
cients g, the total free energy F = }__ f becomes a sum
of squares

ZZ<A+ Lk?)gi[?. (12)

k =1

Then the probability distribution function for the gj is
a product of independent Gaussian functions and it is
straightforward to evaluate the correlation function [14]

(k) = (lgil®)
=T/(A+ Lk?). (13)

The functions c(k) are related to the real-space correla-
tions of the order parameter tensor by a Fourier trans-
form

(Qap (x)Qys(x")) k(=)

5
ZZC’ ;ﬂEfﬂ;e
k

=1

-

(14)
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By linear response theory, ci(k)/T is also the suscepti-
bility which gives the response of the order parameter to
an external field F', which couples to the system with an
interaction energy > F iE;ﬂQaﬁ (x)etkx.

A special case of (13) of interest is (tr@?) where Q is
the average order parameter Q = & 3., Q(z),

_ 1 .
2y _
(trQ%) = 3 ;c'w)
5T
= —. 15
VA (15)
In addition to the average value of trQ?2, it is also of
interest to consider its distribution function. [The case
k = 0 is exceptional in that gj is real and there is no
double counting of k and —k. These two factors cancel
in the calculation of c¢(k).] Introducing the shorthand

X =trQ?
7 @) (16)

the distribution function for X is

P(X) = %/dsqs (X— %Zqz)
X exp (—%A;qf/T)

4 (va

NG (—ZT

where Zj is a normalization constant.

5/2
) X3 %exp(-VAX/2T), (17)

MONTE CARLO SIMULATIONS

In our simulations, we have used a vectorized algorithm
in which the lattice is divided into two sublattices which
form the pattern of a chess board, which we refer to as
black and white sublattices. Since all the neighbors of
a molecule on the black sublattice are on the white sub-
lattice, and vice versa, a Metropolis update of one black
molecule has no effect on the other black molecules, and
a whole sublattice can be updated as a vector. This idea
has been widely used in simulations of lattice models with
neighbor interactions. Some of these applications have
been reviewed recently by Landau [15]. The validity of
the method follows from the fact that it is a special case
of the algorithms using sequential updates analyzed by
Hastings [16].

At every temperature, the simulations were initialized
in a perfectly ordered state, then equilibrated for 20 000
sweeps. Production runs of 500000 sweeps followed for
the calculation of averages. We have checked that the
configurations were well equilibrated by performing a
separate run at T = 1.13 starting from the final configu-
ration of the previous run and comparing the distribution
function for the order parameter. The correlation func-
tions c(k) were calculated for k = (k.,0,0) by summing
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the order parameter tensor QQog over slices £ =const,
decomposing Q.s(z) onto the basis of the E*’s, and per-
forming a one-dimensional Fourier transform to obtain
the coefficients gi. The values of {|gf|?) were then ob-
tained by averaging over the run. According to Eq. (13),
c¢i(k) is actually independent of the index, i. Since the
g}, are statistically independent in the Gaussian approx-
imation, we use the variations of the individual ¢* with
i as a measure of the statistical error in the ¢'. In Fig.
1 we show c(k), which is the average over the index 14
of the calculated c*(k). The error bars shown are sim-
ply 1/4/5 — 1 times the rms deviations of the individual
c¢i(k) from the average. Note that all results in this sec-
tion are reported with e taken as the unit of energy, the
lattice spacing as the unit of length and €/kp as the unit
of temperature.

Figure 1 shows the simulation results for c(k), to-
gether with fits to the Landau theory form, Eq. (13), for
temperatures ranging from 1.13 to 1.18. The nematic-
isotropic transition temperature has been estimated for
the Lebwohl-Lasher model to be [8,9] T. = 1.1232.
Clearly evident in the figure is the enhancement of the
susceptibility on approaching the phase transition from
above. The fits to the Landau theory appear to be rea-
sonable, although the simulation data are systematically
above the curves for larger wave vectors. This is more
apparent when the reciprocal of c(k) is plotted. Figure 2
shows T'/c(k) at T = 1.16 as a representative case. The
open circles are the simulation data for a 30 x 30 x 30
simulation box, corresponding to what is shown in Fig. 1.
In the Landau theory, this function is simply a quadratic
A+ Lk?%. Landau theory is expected to describe the long
wavelength limit, but at shorter wavelengths the under-
lying lattice structure, along with the details of short-
range correlations, become significant. In the present
case, the lattice structure requires that dc(k)/0k, = 0
at k = (m,0,0), which is reflected in Fig. 2. In light of
the periodicity of ¢(k) as a function of k., we have fitted
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FIG. 1. The correlation function c¢(k). The temperatures
shown are, from top to bottom, T = 1.13, 1.135, 1.14, 1.145,
1.15, 1.155, 1.16, 1.165, 1.17, 1.175, and 1.18. Solid dots with
error bars are the simulation data. Solid lines are fits to the
Landau theory form, Eq. (13).
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FIG. 2. The reciprocal of the correlation function T'/c(k) at
T = 1.16. Open circles are the simulation data for a periodic
box of dimensions 30 x 30 x 30 in lattice units. Solid line is
a cosine series fit. The dashed line shows only the quadratic
term from the cosine fit. The solid dots are from a simulation
with the z dimension of the box extended to 40 lattice units.

T/c(k) to a cosine series of the form
T/c(kz) = ancos(nk,). (18)

The coefficient L, as used in the plots in Fig. 1, was then
obtained by differentiating the cosine series.

Retaining only the quadratic term of the fit from Eq.
(18) we see from Fig. 2 that only the first three wave
vectors lie on the quadratic part of the curve. The spac-
ing of the wave vectors is set by the box dimensions by
Ak; = 2n/l;. As a check that our result for L is not
substantially effected by discretization of k due to the fi-
nite simulation box size, we have performed simulations
at T = 1.14, 1.16, and 1.18 using a box which is ex-
tended in the z direction to 40 lattice units. The results
at T = 1.16 are shown in Fig. 2 as the solid dots. The
results from the larger simulation box seem to interpolate
well between the points from the 30% box. This is typical
of the results at the other temperatures, and the values of
L obtained from the larger simulation boxes agree with
the results from the smaller ones to within the statistical
error. This is shown in Fig. 3, which gives the tempera-
ture dependence of L as obtained from c(k). It is usually
assumed that L is weakly dependent on the temperature.
Figure 3 seems to indicate a fairly rapid increase of L on
approaching the phase transition. However, as discussed
below, for T' < 1.14, the order parameter fluctuations
in our simulations do not follow a Gaussian distribution,
and the results obtained at these lower temperatures in-
clude finite size effects and a resulting deviation from the
thermodynamic limit.

An important effect of the finite size of the simulation
box is that near the phase transition, statistical averages
will contain contributions from both the ordered and dis-
ordered phase, whereas in the thermodynamic limit only
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FIG. 3. Temperature dependence of the elastic coefficient
L. Open circles are for a box of dimensions 30 x 30 x 30 in
lattice units. Solids dots are from a simulation with the z
dimension of the box extended to 40 lattice units. The unit
of temperature is €/kp.

the phase corresponding to the absolute minimum of the
free energy will contribute. In our case, averages like
¢(0) o (tr@Q?) will contain contributions from the ordered
phase as we approach T, from above and the value of
X o« 1/A will not correspond to what will be obtained
in the thermodynamic limit. As a check on this possibil-
ity, we have compared the distribution function for trQ?
with the theoretical form, Eq. (17). Since the distribu-
tion for order parameter fluctuations is expected to be
Gaussian in the thermodynamic limit, Eq. (17) should
also be valid in this limit. Figures 4 and 5 show the
distribution functions for trQ? obtained from our simu-
lations for the temperatures T = 1.16, an intermediate
temperature, and T = 1.13, a low temperature close to
the phase transition. In both cases the upper curves show
In[P(X)/X3/?] where X = trQ?. According to Eq. (17),
this is expected to yield a straight line. The scales of
the = axes of the two plots are different, reflecting the
different values of (trQ?) at the two temperatures, but in
both cases the variation on vertical axis of the log plots
is approximately 8, corresponding to a variation of the
exponential factor of 3 x 103. Errors in the distribution
functions have been estimated using dn; = /n;, where
n; is the number of samples in the ith bin of the his-
togram. The statistical independence of the samples is
confirmed by the fact that an independent simulation at
T = 1.13 gives the same distribution function to within
the estimated errors.

Figure 4 shows that the theoretical form (15) gives
an excellent fit to the simulation data at T' = 1.16 over
the whole range for which there are significant statistics.
However, at T' = 1.13, Fig. 5 shows significant departures
from the theoretical distribution function at larger values
of trQ2. In the upper curve, we see that a linear form
describes the data well for trQ? < 0.01 and the straight
line shown is a fit to the data for trQ? < 0.006. However,
the weight given to larger values of trQ? is greater than is
expected from the theoretical distribution function. This
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is consistent with the idea that the ordered phase is con-
tributing to (trQ?). In light of the fact that there is a
substantial linear regime in the plot of In[P(X)/X3/?],
which holds near trQ? = 0, we have considered another
measure for the coefficient A by equating the slope with
—V A/2T. This measure of A may be interpreted as being
related to the susceptibility for small fluctuations about
the disordered phase. In the cases where the distribution
function, Eq. (17), is obeyed, this measure of A will be
equivalent to that obtained from Eq. (15). Any differ-
ence between the two measures of A is indicative of a
breakdown of the Gaussian distribution for the fluctua-
tions of the order parameter, related to the small system
size.

The interpretation that departure of the distribution
function for trQ? from the form given in Eq. (17) is due
to finite size effects is supported by a simulation of a
larger system. Figure 6 shows a plot of In[P(X)/X3/?]
from the simulation of the 30 x 30 x 30 system, along
with the result for a 40 x 40 x 40 system at 7' = 1.13.
Together with the simulation results are fits to straight
lines, as predicted by Eq. (17). Again, the fits are made
to the data in the linear regime at smaller values of X.

T T T

T=1.16

¢ Simulation Data
— Linear Fit

In[P(X)/x*/?]

12 F .
10 - srr 1
. I L | X 3
0 0.001 0.002 0.003 0.004  0.005 0.006
X = tr Q2
T T T T
500 3

= 1.16 1

400 b ¢ Simulation Data

—Fi

300

P(X)

200

100 4

L 1 '
0 0.001 0.002 0.003 0.004 0.005 0.006
X = tr @2

. 1

FIG. 4. The probability distribution function for trQ? at
T = 1.16. Solid lines are a fit to the theoretical form Eq.
(17).
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The = axes of the plots have been scaled by the volume,
so that the two different systems can be plotted on the
same scale. It can be seen that the larger system con-
forms significantly better to the theoretical form for the
distribution function over the same range of variation of
the exponential factor. This is also confirmed by the nu-
merical results for the coefficient A. For the 30 x 30 x 30
system, we obtain A = 0.0371 +0.0005 by fitting the dis-
tribution function P(X) at small X, whereas we obtain
A = 0.030 % 0.001 using Eq. (15) for (trQ?). For the
40 x 40 x 40 system we obtain A = 0.0361 + 0.0003 from
fitting P(X) and A = 0.0331 % 0.0007 from (trQ?). The
two values of A are closer for the larger system, indicat-
ing that the theoretical distribution function, Eq. (17),
is more closely obeyed for the larger system, although for
40° molecules, there is still a significant finite size effect
at T =1.13

In Fig. 7, we show our results for the coefficient A as
a function of temperature. The open circles are obtained
from (trQ?) using Eq. (15). The solid triangles show
the result from fitting In[P(X)/X3/2] for small values of
X = trQ?. For temperatures < 1.14, there are signifi-
cant differences between the two results, indicating that

T A T T T
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FIG. 5. The probability distribution function for trQ? at
T = 1.13. Solid lines are a fit to the theoretical form Eq.
(17).
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FIG. 6. The probability distribution function for trQ? at
T = 1.13 for systems of 30° and 40® molecules. The X axis
is scaled by the volume so that the two system sizes can be
plotted on the same scale.

the order parameter fluctuations do not obey a Gaussian
distribution. However at higher temperatures, the fluc-
tuations are Gaussian, and the two results agree. The
straight line is a fit to those points for which the fluctu-
ations are Gaussian to the Landau form, Eq. (3). We
obtain

a =3.19 4 0.03,
T* = 1.1194 + 0.0005, (19)

where the uncertainties are estimates of the statistical
errors. Error bars on (tr@?) have been obtained by stan-
dard block averaging procedures, with block lengths of
4000 Monte Carlo sweeps. Blocks of this length were
found to be necessary at the lowest temperatures. The

T T T T T
o 5 T/(V <tr %

(v <ir 02) / |
fit @

. from distribution function

0.05 -

.
/
0 °© 1 . I . | L !

1.12 1.14 1.16 1.18 1.20
T

FIG. 7. The temperature dependence of the coefficient A.
Open circles are obtained from (trQ?) using Eq. (15). Trian-
gles are obtained by fitting the probability distribution func-
tion for tr@Q? to the form given by Eq. (17) as described in
the text. The solid line is a fit to the data (open circles) for
T > 1.145. The unit of temperature is €/kp.

error bars in Fig. 7 are all smaller than the plotting
symbols. This estimate of T*, together with the exist-
ing estimates of the phase transition temperature [8,9]
T. = 1.1232, yield (T. — T*)/T. = 3.4 x 1073, which is
comparable with the values obtained for real liquid crys-
tals [3,4,18] and much smaller than the value obtained
from mean field theory.

CONCLUSIONS

We have carried out Monte Carlo simulations of the
Lebwohl-Lasher model in the temperature range from
T = 1.125 to T = 1.19 and observed the correlation
functions for the order parameter fluctuations. These
are compared with the predictions of Landau theory to
obtain values of the elastic constant L and the inverse
susceptibility A. We have also studied the distribution
function for the fluctuating quantity trQ?, where Q is
the average over the volume of the simulation box of the
order parameter tensor.

The distribution function for trQ? is predicted to have
a simple form, Eq. (17), if the order parameter fluctua-
tions are Gaussian. We find that this form is obeyed in
our simulations for temperatures greater than =~ 1.145.
At lower temperatures, the ordered phase begins to con-
tribute to the statistical averages, giving more weight to
more ordered states. This effect is attributed to the finite
size of the simulation, since in the thermodynamic limit,
only the phase corresponding to the absolute minimum
of the free energy contributes to statistical averages. For
a system with linear dimension [ >> £, where £ is the cor-
relation length, the average order parameter is expected
to have a Gaussian distribution as a result of the central
limit theorem.

We find that, for temperatures where the fluctuations
are Gaussian, the elastic constant L is a slowly decreas-
ing function of the temperature and that the temperature
dependence of A is well described by a Landau theory be-
havior A(T) = a(T — T*). Our value of T*, the stability
limit of the isotropic phase T* = 1.1194 +0.0005, is close
to the value T* = 1.1201+0.0006 obtained by Fabbri and
Zannoni [8]. While their method was similar in spirit to
the method used here, it is understandable that their es-
timate of T* is higher than ours, since their fit involved
a large number of points close to the ordering transition,
which tend to raise the estimated T*. We have not used
these lower temperatures in our fit when they show sub-
stantial departures from a Gaussian distribution for the
order parameter fluctuations, indicating substantial size
effects. Our estimate of T is in contrast to the result
of Zhang, Mouritsen, and Zuckermann [9], from whose
Fig. 3 we estimate T* = 1.1228 in the limit [ — oo and
even higher for the system size considered here. The re-
sult of Zhang et al. is based on a very different approach
of using a histogram technique to obtain the dependence
of the free energy on the order parameter for tempera-
tures in the transition region. This approach is close in
spirit to the Landau theory from which the concept of
the stability limit derives. However, there remain diffi-
culties of principle in defining such stability limits outside
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of mean field theory [17]. Our procedure of extrapolating
the susceptibility from the disordered phase is equivalent
to the methods used in experiments on real liquid crys-
tals. This approach gives an operational definition to T,
while sidestepping questions of principle.

It is expected that near T*, modifications of the mean-
field-like behavior A o< (T — T™*) will appear due to in-
teractions between the fluctuations. Very near T, one
expects A o« (T — T*)", with a nontrivial exponent +.
Departures from linearity of A(T') have been observed in
the range of ~ 1 K above T, in experiments on the nCB
(n cyanobiphenyl) series of nematics in Ref. [19]. In Ref.
[12], it was found that these deviations from linearity
could be fit by considering perturbative self-energy cor-
rections to the correlation function c(k). It is likely that
a similar phenomenon will occur in the Lebwohl-Lasher
model. However, if we translate the experimental tem-
perature range to our units, it corresponds to T' < 1.126
where the simulations suffer from substantial finite size
effects. Thus it is not possible to address the question
of critical behavior on the basis of the present simula-
tions. Our main goal has been to study the behavior of
the Lebwohl-Lasher model in comparison with the phe-
nomenological theories which are able to describe the
fluctuations in real nematic liquid crystals well over the
range from ~ 1 to ~ 20 K above the transition using a
mean field exponent.

The elastic term in the free energy 1LQag,~Qgpa,y is
obtained by keeping only terms quadratic in Q. This is
appropriate for treating fluctuations about the disordered
phase. If the same elastic energy is assumed to be valid
in the nematic phase, the Frank elastic constant K is
related to L by [11]

K= gLsz, (20)

where S is the scalar order parameter, which is the largest
eigenvalue of Q. Numerical values for K at different tem-
peratures in the nematic phase have been obtained by
Cleaver and Allen [10]. If we use our value of L = 0.93,
obtained at T = 1.15, we obtain K/S? = 4.185, which ex-
ceeds by 13% the value obtained in Ref. [10] at T = 1.08
in the nematic phase. This indicates that elastic terms
which are of higher order in Q than quadratic make im-

portant contributions in the nematic phase. Cleaver and
Allen found that K/S? was a decreasing function of S,
so it is consistent that our value is larger than those ob-
tained in the ordered phase.

In comparing the Lebwohl-Lasher model with experi-
mental data on real nematics, there are two parameters
to be adjusted. These are the interaction energy € and
the lattice spacing d. Restoring powers of length, energy,
and Boltzmann’s constant, we can summarize the earlier
data on the transition temperature [8,9] and our present
results as

kpT./e = 1.1232,

dL/e = 0.93,
d*a/kp = 3.19,
kp(T. — T*)/e = 0.0038.. (21)

Taking the values used in Ref. [12] for the material
8CB, T. = 313 K and L = 6.62 x 107'2J/m to
fix € and d, we obtain for the other coefficients a =
0.277 x 10°JK'm™2 and T, — T* = 1.06 K. These
are to be compared to the actual material values a =
0.126 x 108 JK~'m~3 and T. — T* = 1.12K. We see that
there is order of magnitude agreement. The discrepancy
is on the order of the variations among different mate-
rials [18]. Thus, despite the fact that it is unrealistic
at a microscopic level, the Lebwohl-Lasher model seems
to give a good qualitative representation of fluctuation
effects seen in real nematic liquid crystals. Simulation
studies of this model will be useful in studying the effects
of fluctuations on other liquid crystal phase transitions,
for example, those of liquid crystals in confined geome-
tries, where the boundary conditions induce defects in
the nematic order [20].
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